The relationship between dietary intake and body mass index among young rural adults in South Africa aged 18 to 30 years: the Ellisras longitudinal study (ELS18)
Julia TM Mashiane, Kotsedi D Monyeki, Andre P Kengne Nkwana M Rosina, Mafoloa S Monyeki

Abstract
Aim: To assess the relationship between dietary intake and adiposity in young rural South African adults.
Methods: A total of 728 young adults participated and dietary intake was assessed using the 24-hour recall method. Linear regression models were used to determine the association between dietary intake and body mass index (BMI) before and after adjustment for age and gender.
Results: Females showed higher mean BMI values than males in all age groups. An age group of 27- to 30-year-old females had a mean value of 28.1 kg/m² while males had a mean value of 21.9 kg/m². The distribution of BMI categories (underweight, normal weight, overweight, obese) was 20.5, 61.7, 9.3 and 3.1% in males, and 8.6, 42.5, 23.1 and 25.8% in females (p ≤ 0.05). Cholesterol intake was significantly (p ≤ 0.05) associated with BMI (beta = 0.002, 95% CI: 0.00–0.004) as well as overweight and obesity (odds ratio = 1.734; 95% CI: –1.09–2.75) after adjustment for age and gender.
Conclusion: There was a high prevalence of overweight and obesity among rural Ellisras females. Moreover, increasing cholesterol intake was associated with overweight and obesity in the overall sample.

Keywords: dietary intake, body mass index, adults, overweight and obesity

The prevalence of obesity continues to increase at an alarming rate worldwide, with approximately two billion people being overweight and one-third of them obese. Over-consumption of macronutrients contributes to overweight and obesity among the adult population. A diet characterised by a decrease in dietary fibre and an increase in saturated fats, accompanied by a lack of physical activity, results in weight gain. This is the result of a positive energy balance, where energy intake is higher than energy expenditure.

Traditional eating habits of South Africans residing in rural areas consist mostly of a prudent diet, which is associated with a low prevalence of overweight and obesity. However, the shift towards a Western diet has become apparent among rural Africans, increasing their likelihood of having modifiable risk factors for chronic diseases of lifestyles, which include physical inactivity, increased alcohol consumption, stress and smoking.

Preliminary results from the Ellisras cohort study showed a significant association between intake of mono-unsaturated fats and body mass index (BMI) among rural Ellisras children. Furthermore, Sekgala et al. reported a potential link between dietary fibre intake and fasting blood glucose and high-density lipoprotein cholesterol levels with both systolic and diastolic blood pressure among young rural Ellisras adults. With the Ellisras sample reaching the young adult stage, the relationship between BMI and dietary intake has received little attention. This cross-sectional study aimed to investigate the relationship between dietary intake and BMI among young rural Ellisras adults aged 18 to 30 years.

Methods
This study is part of the ongoing Ellisras longitudinal study (ELS), of which the details of the sampling procedure and geographical area were reported elsewhere. The subjects participating in this cross-sectional study included 728 young adults (356 males and 372 females), aged 18 to 30 years, who are part of the Ellisras longitudinal study (ELS).

The ethics committee of the University of Limpopo granted ethical approval prior to the survey. The participants were provided with informed consent forms and signed the form after receiving verbal assent from the project leader. All participants underwent a series of anthropometric measurements according to the standard procedures recommended by the International Society for the Advancement of Kinanthropometry (ISAK). Weight was measured on an electronic scale to the nearest 0.1 kg, with light clothing and
without shoes. Martin anthropometric was used to measure height, to the nearest 0.1 cm, with no shoes. BMI was defined as weight (kg)/height (m²). All participants were classified as underweight, normal, overweight and obese, according to World Health Organisation cut-off points for adults.13

Diet was measured using the 24-hour recall method, which is a valid method to determine group dietary intake.14 In December 2015, senior Northern Sotho-speaking dietetics students of the University of Limpopo, specifically trained in using the 24-hour recall method, interviewed the parent/caregiver at home regarding the dietary intake of the young adults over the previous 24 hours. For each participant, an interview took place on one weekday and one weekend day. An average of two days of 24-hour dietary intake was then taken for each participant.

Estimated portion sizes of foods consumed were recorded in as much detail as possible, using a pre-tested questionnaire and food models simulating average portions of local foods.15,16 Dietary data were analysed using local food tables and Food Finder dietary software, and compared with recommended intakes.15-18

Statistical analysis

Variables were summarised as descriptive statistics. Linear regression models were used to assess the continuous association between dietary intake and BMI, while logistic regression models were used to assess the association between low/high dietary intake and prevalent overweight and obesity, both in invariable analyses and after adjusting for age and gender. All data were analysed using the statistical package for social sciences (SPSS) version 23 and a p-value < 0.05 was used to characterise statistically significant results.

Results

The mean BMI was 20.3–21.9 kg/m² in males and 23.2–28.1 kg/m² in females (p ≤ 0.05). Mean BMI increased from 20.3 kg/m² in the age group 18–20 years to 21.9 kg/m² in the age group 27–30 years in males, and from 23.2 to 28.1 kg/m² in females (Fig. 1). The distribution of BMI categories in the overall sample was 8.6–20.5% for underweight, 9.3–23.1% for overweight and 3.1–25.8% for obesity. Equivalent figures were 20.5, 61.7, 9.3 and 3.1% in males, against 8.6, 43.5, 23.1 and 25.8% in females (p ≤ 0.05 for the difference in the distribution of BMI categories in males and females) (Fig. 2). Males had a higher incidence of underweight (20.5%) than females. However, females (23.1 and 25.8%) showed a higher incidence than males (9.3 and 3.1%) of overweight and obesity, respectively.

Fried chicken (23.8%), pap (22.6%), cold drink (16.9%) and white sugar (14%) were the foods most frequently consumed by the young Ellisras adults, while samp (2.6%), yogurt (2.4%) and spinach (2.0%) were the least frequently consumed foods (Table 1). Carbohydrates ranged between 78.2 and 84.5% while total fats and saturated fats ranged between 31.6 and 42%, and 4.1 and 6.0%, respectively, for all BMI categories for the overall population (Fig. 3).

In linear regression analyses, there was a borderline positive association between cholesterol intake and BMI (p = 0.058), with further enhancement after adjustment for age and gender (beta = 0.002, p = 0.035) (Table 2). Table 3 presents logistic regression for the association between overweight/obesity and low dietary intake. In logistic regression analyses, there was a positive association between cholesterol intake and overweight and obesity (p = 0.084), and after adjustment for age and gender, the association of cholesterol intake with overweight and obesity was significant (p = 0.020) (Table 3).

Discussion

This study aimed to investigate the relationship between dietary intake and BMI among young rural Ellisras adults aged 18 to
BMI variables

<table>
<thead>
<tr>
<th>Nutritional Status</th>
<th>Total fat</th>
<th>Animal protein</th>
<th>Plant protein</th>
<th>Total sugar</th>
<th>Carbohydrates</th>
<th>Total dietary fibre</th>
<th>Total protein</th>
<th>Cholesterol intake</th>
<th>Mono-unsaturated fatty acids</th>
<th>Polyunsaturated fatty acids</th>
<th>Saturated fatty acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>-0.002</td>
<td>-0.011</td>
<td>0.007</td>
<td>0.665</td>
<td>0.004</td>
<td>0.016</td>
<td>0.034</td>
<td>-0.002</td>
<td>-0.032</td>
<td>0.026</td>
<td>0.019</td>
</tr>
<tr>
<td>Normal</td>
<td>-0.001</td>
<td>0.007</td>
<td>0.015</td>
<td>0.988</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
<td>-0.001</td>
<td>-0.032</td>
<td>0.026</td>
<td>0.017</td>
</tr>
<tr>
<td>Overweight</td>
<td>0.000</td>
<td>-0.016</td>
<td>0.015</td>
<td>0.988</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
<td>-0.002</td>
<td>-0.027</td>
<td>0.016</td>
<td>0.017</td>
</tr>
<tr>
<td>Obese</td>
<td>0.000</td>
<td>-0.016</td>
<td>0.015</td>
<td>0.988</td>
<td>0.004</td>
<td>0.004</td>
<td>0.005</td>
<td>-0.002</td>
<td>-0.029</td>
<td>0.026</td>
<td>0.017</td>
</tr>
</tbody>
</table>

*β: beta-coefficient. *Significant at p < 0.05.

Table 2: Linear regression coefficient, 95% CI and p-value in the association with body mass index and dietary intake

Table 3: Logistic regression for the association between overweight/obesity and low dietary intake

Variable	OR	95% CI	p-value	OR	95% CI	p-value
Total fat | 0.78 | 0.56 | 1.10 | 0.154 | 0.86 | 0.59 | 1.22 | 0.430 |
Total sugar | 1.18 | 0.87 | 2.08 | 0.561 | 0.96 | 0.52 | 1.78 | 0.900 |
Saturated fat | 1.23 | 0.89 | 1.69 | 0.215 | 1.32 | 0.924 | 1.894 | 0.127 |
Mono-unsaturated fatty acids | 0.61 | 0.20 | 1.88 | 0.388 | 0.48 | 0.14 | 1.694 | 0.255 |
Polyunsaturated fatty acids | 1.48 | 0.25 | 8.93 | 0.668 | 1.46 | 0.20 | 10.81 | 0.708 |
Cholesterol intake | 1.43 | 0.95 | 2.16 | 0.084 | 1.73 | 1.09 | 2.75 | 0.020* |

OR: odds ratio; CI: confidence interval. *Significant at p < 0.05.
Conclusions
There was a high prevalence of overweight and obesity among rural Ellisras females. Cholesterol intake was associated with a raised BMI in the overall sample. Therefore, dietary knowledge and access to resources are important to improve health and nutrition in a sustainable way. The need to assess the changes that occur over time in serum levels of a variety of biochemical and haematological parameters related to cardiovascular diseases and/or diabetes in rural African settings is vital.

The financial support received from Vrije University, Amsterdam, the Netherlands (grant: UNIN Health Project under VUA Foundation funds), the University of Limpopo, South Africa (grant no. K041), the National Research Foundation of South Africa (grant no. URD2002030400168), and the Medical Research Council for the Ellisras Longitudinal Study is acknowledged with gratitude. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the funding sources do not accept any liability in regard thereto. The authors are indebted to ELS administrators (PS Seleka, TT Makata, W Makata, S Seleka) for providing technical support in the preparation of this manuscript.

References