Background Image
Table of Contents Table of Contents
Previous Page  12 / 64 Next Page
Information
Show Menu
Previous Page 12 / 64 Next Page
Page Background

CARDIOVASCULAR JOURNAL OF AFRICA • Volume 27, No 1, January/February 2016

10

AFRICA

16. Splawski I, Shen J, Timothy KW,

et al

. Spectrum of mutations in

long-QT syndrome genes : KVLQT1, HERG, SCN5A, KCNE1, and

KCNE2.

Circulation

2000;

102

(10): 1178–1185.

17. Larsen LA, Andersen PS, Kanters J,

et al.

Screening for mutations and

polymorphisms in the genes KCNH2 and KCNE2 encoding the cardiac

HERG/MiRP1 ion channel: implications for acquired and congenital

long Q-T syndrome.

Clin Chem

2001;

47

(8): 1390–1395.

18. Mazhari R, Greenstein JL, Winslow RL, Marbán E, Nuss HB.

Molecular interactions between two long-QT syndrome gene products,

HERG and KCNE2, rationalized by

in vitro

and

in silico

analysis.

Circ

Res

2001;

89

(1): 33–38.

19. Zhang M, Wang Y, Jiang M,

et al

. KCNE2 protein is more abundant

in ventricles than in atria and can accelerate hERG protein degradation

in a phosphorylation-dependent manner.

Am J Physiol

Heart Circ

Physiol

2012;

302

(4): H910–922.

20. Tinel N. KCNE2 confers background current characteristics to the

cardiac KCNQ1 potassium channel.

Eur Mole Biol Org J

2000;

19

(23):

6326–6330.

21. Towbin JA, Vatta M. Molecular biology and the prolonged QT

syndromes.

Am J Med

2001;

110

(5): 385–398.

22. Chun KRJ, Koenen M, Katus HA, Zehelein J. Expression of the IKr

components KCNH2 (rERG) and KCNE2 (rMiRP1) during late rat

heart development.

Exp Mol Med

2004;

36

(4): 367–371.

23. Kawakami K, Nagatomo T, Abe H,

et al

. Comparison of HERG

channel blocking effects of various

β

-blockers – implication for clinical

strategy.

Br J Pharmacol

2006;

147

(6): 642–652.

24. Clark RE, Christlieb I, Sanmarco M, Diaz-Perez R, Dammann JF,

Zipser ME. Relationship of hypoxia to arrhythmia and cardiac conduc-

tion hemorrhage: an experimental study.

Circulation

1963;

27

(4):

742–747.

25. Ju YK, Saint DA, Gage PW. Hypoxia increases persistent sodium

current in rat ventricular myocytes.

J Physiol

1996;

497

(Pt 2): 337–347.

26. Prandota J. Possible pathomechanisms of sudden infant death syndrome:

key role of chronic hypoxia, infection/inflammation states, cytokine

irregularities, and metabolic trauma in genetically predisposed infants.

Am J Ther

2004;

11

(6): 517–546.

27. Neary MT, Mohun TJ, Breckenridge RA. A mouse model to study

the link between hypoxia, long QT interval and sudden infant death

syndrome.

Dis Model Mech

2013;

6

(2): 503–507.

28. Conforti L, Millhorn DE. Selective inhibition of a slow-inactivating

voltage-dependent K

+

channel in rat PC12 cells by hypoxia.

J Physiol

1997;

502

(Pt 2): 293–305.

29. Wang J, Weigand L, Wang W, Sylvester JT, Shimoda LA. Chronic

hypoxia inhibits Kv channel gene expression in rat distal pulmonary

artery.

Am J Physiol Lung Cell Mol Physiol

2005;

288

(6): L1049–1058.

30. Nanduri J, Bergson P, Wang N, Ficker E, Prabhakar NR. Hypoxia

inhibits maturation and trafficking of HERG K

+

channel protein:

Role of Hsp90 and ROS.

Biochem Biophys Res Commun

2009;

388

(2):

212–216.

31. Xia S, Wang Y, Zhang Y,

et al.

Dynamic changes in HCN2, HCN4,

KCNE1, and KCNE2 expression in ventricular cells from acute myocar-

dial infarction rat hearts.

Biochem Biophys Res Commun

2010;

395

(3):

330–335.

32. Van der Ven PF, Obermann WM, Lemke B, Gautel M, Weber K, Fürst

DO. Characterization of muscle filamin isoforms suggests a possible role

of gamma-filamin/ABP-L in sarcomeric Z-disc formation.

Cell Motil

Cytoskeleton

2000;

45

(2): 149–162.

33. Cho K-O, Lee K-E, Youn D-Y,

et al

. Decreased vulnerability of

hippocampal neurons after neonatal hypoxia-ischemia in bis-deficient

mice.

Glia

2012;

60

(12): 1915–1929.

34. Nissou M-F, El Atifi M, Guttin A,

et al.

Hypoxia-induced expression of

VE-cadherin and filamin B in glioma cell cultures and pseudopalisade

structures.

J Neurooncol

2013;

113

(2): 239–249.

35. Kley RA, Hellenbroich Y, van der Ven PFM,

et al

. Clinical and morpho-

logical phenotype of the filamin myopathy: a study of 31 German

patients.

Brain

2007;

130

(12): 3250–3264.

36. Goldfarb LG, Olivé M, Vicart P, Goebel HH. Intermediate filament

diseases: desminopathy.

Adv Exp Med Biol

2008;

642

: 131–164.

37. Feng Y, Walsh CA. The many faces of filamin: a versatile molecular

scaffold for cell motility and signalling.

Nat Cell Biol

2004;

6

(11):

1034–1038.

38. Ithychanda SS, Hsu D, Li H,

et al

. Identification and characterization

of multiple similar ligand-binding repeats in filamin implication on

filamin-mediated receptor clustering and cross-talk.

J Biol Chem

2009;

284

(50): 35113–35121.

39. Lecour S, Suleman N, Deuchar GA,

et al.

Pharmacological precondi-

tioning with tumor necrosis factor-

α

activates signal transducer and

activator of transcription-3 at reperfusion without involving classic

prosurvival kinases (Akt and extracellular signal-regulated kinase).

Circulation

2005;

112

(25): 3911–3918.

40. Bradford MM. A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye

binding.

Anal Biochem

1976;

72

: 248–254.

41. Abbott GW. Disease-associated mutations in KCNE potassium channel

subunits (MiRPs) reveal promiscuous disruption of multiple currents

and conservation of mechanism.

Fed Am Soc Exp Biol J

2002;

16

(3):

390–400.

42. Fujita M, Mitsuhashi H, Isogai S,

et al.

Filamin C plays an essential role

in the maintenance of the structural integrity of cardiac and skeletal

muscles, revealed by the medaka mutant zacro.

Dev Biol

2012;

361

(1):

79–89.

43. Nakagawa K, Sugahara M, Yamasaki T,

et al

. Filamin associates with

stress signalling kinases MKK7 and MKK4 and regulates JNK activa-

tion.

Biochem J

2010;

427

(2): 237–245.

44. Razinia Z, Mäkelä T, Ylänne J, Calderwood DA. Filamins in mechano-

sensing and signaling.

A Rev Biophys

2012;

41

(1): 227–246.

45. Boraldi F, Annovi G, Carraro F,

et al

. Hypoxia influences the cellular

cross-talk of human dermal fibroblasts. A proteomic approach.

Biochim

Biophys Acta BBA

Proteins Proteomics

2007;

1774

(11): 1402–1413.

46. Hastie LE, Patton WF, Hechtman HB, Shepro D. H

2

O

2

-induced

filamin redistribution in endothelial cells is modulated by the cyclic

AMP-dependent protein kinase pathway.

J Cell Physiol

1997;

172

(3):

373–381.

47. Kesner BA, Ding F, Temple BR, Dokholyan NV. N-terminal strands

of filamin Ig domains act as a conformational switch under biological

forces.

Proteins

2010;

78

(1): 12–24.

48. Petrecca K, Miller DM, Shrier A. Localization and enhanced current

density of the Kv4.2 potassium channel by interaction with the actin-

binding protein filamin.

J Neurosci Off J Soc Neurosci

2000;

20

(23):

8736–8744.

49. Sampson LJ, Leyland ML, Dart C. Direct interaction between the

actin-binding protein filamin-A and the inwardly rectifying potassium

channel, Kir2.1.

J Biol Chem

2003;

278

(43): 41988–41997.

50. Kim EY, Ridgway LD, Dryer SE. Interactions with filamin A stimulate

surface expression of large-conductance Ca

2+

-activated K

+

channels

in the absence of direct actin binding.

Mol Pharmacol

2007;

72

(3):

622–630.

51. An WF, Bowlby MR, Betty M,

et al

. Modulation of A-type potas-

sium channels by a family of calcium sensors.

Nature

2000;

403

(6769):

553–556.